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order to do that, we rederive the fluctuation-dissipation relation for systems of discrete variables evolving in
discrete time via a stochastic nonequilibrium Markov process. The calculation is carried out in a general
formalism comprising the Chatelain, Ricci-Tersenghi, result and that by Lippiello-Corberi-Zannetti as special
cases. The applicability, generality, and experimental feasibility of the two approaches are thoroughly dis-
cussed. Extending the analytical calculation to the variance of the response function, we show the advantage of
field-free numerical methods with respect to the standard method, where the perturbation is applied. We also
show that the signal-to-noise ratio is better �by a factor �2� in the algorithm of Lippiello-Corberi-Zannetti with
respect to that of Chatelain-Ricci Tersenghi.
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I. INTRODUCTION

Recently, there has been much interest in the extension in
the out of equilibrium regime of the fluctuation-dissipation
theorem, through more general fluctuation-dissipation rela-
tion �FDR�, which have led to the concept of effective tem-
perature �1� and to the connection between nonequilibrium
and equilibrium properties �2�. Fluctuating two-time quanti-
ties have also been actively investigated, particularly, in re-
lation to the detection and quantification of dynamical het-
erogeneities, mostly in disordered systems �3�.

The search of FDR between response functions and prop-
erties of the unperturbed system has led to a number of pro-
posals �4–12�. Among these, the two by Chatelain �6� and
Ricci-Tersenghi �7� �CRT� and the one by Lippiello, Corberi,
and Zannetti �8,11,12� �LCZ� have succeeded in making the
connection between the dynamical susceptibility and unper-
turbed correlators between observable quantities. In addition
to the intrinsic theoretical interest, these results opened the
way to the development of perturbation-free numerical algo-
rithms, allowing for highly efficient and precise measure-
ments of the response function via correlators, without the
need of switching on any perturbation.

However, the paths followed by CRT on one side and by
LCZ on the other are quite different as well as the final
results. The two approaches lead to expressions of the sus-
ceptibility in terms of radically different unperturbed corre-
lation functions, making the mapping between them cumber-
some. This poses the question of understanding the inner
relationship between the two results, of their degree of gen-
erality, of which is performing better in numerical implemen-

tations, and of the possible experimental implications. In this
paper, we study these issues and answer these questions. In
order to carry out this program, we derive the FDR for sys-
tems evolving in discrete time via stochastic Markov pro-
cesses defined by transition probabilities obeying detailed
balance. We develop a unified formalism containing different
approaches as special cases and explain the difference be-
tween those of CRT and LCZ. While in the LCZ case the
response function is related to correlation functions com-
puted over the whole nonequilibrium ensemble, in the CRT
approach, instead, averages are taken over a restricted set of
trajectories.

The derivation is fully general for what concerns the na-
ture of the discrete variables �e.g., Ising, Potts, Clock, etc.�
and of the transition probabilities. However, the constraint of
a restricted set of trajectories in the CRT approach requires
the microscopic knowledge of the sequence of �attempted�
updates, which is manageable only in numerical simulations.
On the other hand, in the LCZ approach, a standard unre-
stricted ensemble average is involved, and the response func-
tion is written in terms of standard correlation functions be-
tween observable quantities. This allows analytical
treatments by means of the usual methods of statistical me-
chanics and, in principle, experimental applications. On the
other hand, other approaches, such as those in �5,9,10�, do
not express the response function in terms of observables.

After clarifying the relations between the FDR in the CRT
and LCZ approaches, we turn to compare the efficiencies of
the numerical algorithms based on them, together with that
of the standard method �SM�, requiring the application of an
external perturbation h. An important advantage of the
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perturbation-free methods is that the limit h→0 is built in,
while, with the SM, checking for linearity is often numeri-
cally demanding. Besides this, field-free methods are also
characterized by a better signal-to-noise ratio. This is a rel-
evant fact since the numerical computation of the response
function is extremely noisy. In order to quantify such a noise,
we compute exactly the variance of the response function for
each of the three algorithms. In the SM, it diverges as 1 /h2,
preventing small values of h to be used and making linearity
often insecure. Since, obviously, such a drawback is absent
with the field-free methods, there is an enormous advantage
in their implementation. Nevertheless, also with
perturbation-free algorithms the noise can be significant, es-
pecially for large time differences. The comparison between
the variances of the CRT and the LCZ methods shows that
the LCZ approach yields a better signal-to-noise ratio by a
factor �2. Basically, this difference is a consequence of the
restriction in the set of trajectories required by the CRT
method.

In addition to the relevance for numerical applications,
the results for the variances give a contribution to the under-
standing of fluctuations of two-time quantities, shedding
some light in the field of nonlinear susceptibilities �13�.

After investigating and clarifying the relation between the
different algorithms and their performances, we present the
results of numerical simulations in order to discuss the gen-
erality of the method and to illustrate the efficiency of the
field-free algorithms with particular examples. We compute
numerically the response function for models of Ising spins
�the ferromagnetic Ising model and the Edwards-Anderson
�EA� spin glass in d=3� with the three methods. We show
that both the CRT and the LCZ algorithms produce, with
great accuracy, the same response which can be obtained
with the SM. Computing the variances of the three methods,
we obtain the results outlined above. Finally, we compute the
response function in the Fredrickson-Andersen �FA� model,
both applying the perturbation and with the field-free method
of LCZ, finding again perfect agreement. This demonstrates
the applicability of the LCZ algorithm also in this case and
that the criticism raised in Ref. �14� does not hold.

This paper is organized as follows. In Sec. II we present
the derivation of the FDR. We discuss the results obtained,
their generality, and the measurability of the correlators in-
volved. In Sec. III we compute and compare the variances of
the three algorithms. Section IV is devoted to explicit nu-
merical implementations: We consider the 3d ferromagnetic
Ising and EA models quenched to the critical temperature
and below it. Section IV B contains the application to the FA
model. The conclusions are drawn in Sec. V, where some
perspectives are discussed.

II. ANALYTICAL DERIVATION OF FLUCTUATION-
DISSIPATION RELATIONS

We consider a system of N discrete variables �i �i.e.,
those entering models as Ising, Potts, Clock, etc.�, generi-
cally called spins. Time t is discretized, namely, tn=n�,
where n is an integer, and the time step is �=1 /N. A con-
figuration update is attempted at each time step.

A. Transition probabilities

Spin variables evolve in discrete time according to a ge-
neric Markov chain regulated by the transition probabilities
w��� ��� ,n� to go from a configuration �� to another �� in
the nth time step. Transition probabilities obey the instanta-
neous detailed balance

w������,n�exp�− �H���,n�� = w������,n�exp�− �H���,n�� ,

�1�

where H�� ,n� is the �time dependent� Hamiltonian of the
system. The diagonal terms w��� ��� ,n� remain fixed by the
normalization condition

w������,n� = 1 − �
�̃���

w��̃���,n� . �2�

Restricting, for simplicity, to the case of single-spin update,
the form of the transition probabilities at time n is

w������,n� =
1

N
�

k

wk������,n� , �3�

where wk are the single-spin transition probabilities, namely,
�� and �� may differ only for the kth spin.

The two-time conditional probability P�� ,n ��� ,m� to go
from �� at time m to � at time n can be expressed as

P��,n���,m� =
1

Nn−m �
in−1,. . .,im

�
��n−1�,. . .,��m+1�

win−1
�����n−1�,n�

. . . wim
���m+1����,m� . �4�

In the case of time independent w, the conditional probability
is time translation invariant. For later use, we write this prop-
erty as

P��,n���,m + 1� = P��,n − 1���,m� . �5�

Given two generic observables A��� and B��� �namely,
functions of a configuration of the system�, from the knowl-
edge of the conditional probability, one can compute their
correlation function

CAB�n,m� = �A�n�B�m�	

= �
�,��

A���P��,n���,m�B����P���,m� . �6�

B. Relation between perturbed and unperturbed transition
probabilities

In the presence of an external perturbation hj�n� switched
on in the jth site, the evolution is controlled by the Hamil-
tonian H�� ,n�=H0���−� jhj�n�. In the following, we will
always consider time-independent unperturbed transition
probabilities and we will drop the time dependence in the
unperturbed transition rates. The detailed balance condition
�1� for the perturbed transition probabilities reads as
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wj
h������,n�

wj
h������,n�

=
e−�H0����

e−�H0����
e�hj�n���j�−�j��, �7�

where, from now on, wj and wj
h refer to unperturbed and

perturbed transition probabilities, respectively. The most
general form of wj

h, obeying Eq. �7�, is

wj
h������,n� = wj������,n�e�/2�hj��n���j�−�j��Mj���,��,n� ,

�8�

where Mj��� ,�� ,n� is an h-dependent function symmetric
with respect to the exchange of its arguments and such that
wj

h is a probability, namely, positive and normalizable. To
linear order in the external perturbation, one has

wj
h������,n� = wj�������
1 −

�

2
hj�n��� j� − � j��

+ mj���,���hj�n���1 − ���,���

+ �1 − �
�̃���

wj��̃���,n�
1 −
�

2
hj�n��� j� − �̃ j�

+ mj��̃,��,n�hj�n��
���,��, �9�

where

mj���,��,n� =� �Mj���,��,n�
�hj�n�

�
h=0

. �10�

Let us comment on mj. It is well known that the detailed
balance condition leaves an arbitrarity on the choice of the
transition probabilities, both for the unperturbed and the per-
turbed ones. Even for a fixed choice of unperturbed wj, there-
fore, there is a family of different wj

h, obeying detailed bal-
ance, parametrized by mj.

C. Response function

For a magnetic perturbing field hj�m� turned on the site j
in the mth time step, the impulsive response function
Ri,j�n ,m�, describing the effect of the perturbation on the
spin �i at time n�m, is defined by

Ri,j�n,m� =
1

�
� ���i�n�	

�hj�m�
�

h=0
= N� ���i�n�	

�hj�m�
�

h=0
, �11�

where averages � . . . 	 are taken over thermal histories and the
initial condition.

From Eq. �4�, one has

Ri,j�n,m� = N �
�,��,��

�iP��,n���,m + 1��
�

dwj
h�������
dhj

�
h=0

P���,m� . �12�

The derivative of the wk
h with respect to the field can be

easily obtained from Eq. �9�,

� �wj
h������,n�
�hj�m�

�
h=0

= wj��������f j���,����1 − ���,���

+ gj�������,����n,m, �13�

where

f j���,��� = −
�

2
���j − � j�� + mj���,��� , �14�

and

gj���wj����� = − �
����

wj������f j���,�� . �15�

From Eqs. �13�–�15�, it is clear that the response function
of Eq. �12� cannot be straightforwardly interpreted as corre-
lation functions. In order to do that, one would need the full
transition probability P�� ,n ��� ,m+1�w��� ��� ,m� connect-
ing �� at time m to �� at time n, with w��� ��� ,m� containing
all the wk��� ����, according to Eq. �3�, while in Eq. �13�,
only the one site wj��� ���� appears. A way out is to insert
the missing w��� ��� ,m� by writing �Ndwj

h /dhj�h=0
=�dwh /dhj�h=0=�wd�ln wh� /dhj�h=0, as proposed in �10�, obtain-
ing

Ri,j�n,m� = �
�,��,��

�iP��,n���,m + 1�w��������
�

d ln wh�������
dhj

�
h=0

P���,m� . �16�

However, let us notice that although the response function is
expressed in terms of the unperturbed dynamics, the function
appearing on the right-hand side of Eq. �16� is not in the
form of a correlation function between observables accord-
ing to the definition �6�. This is because�d�ln wh� /dhj�h=0 de-
pends on two configurations.

Going back to Eq. �12�, in order to illustrate the CRT and
the LCZ approaches, it is useful to write the response func-

tion as the sum of an off-diagonal contribution D̄i,j�n ,m� and
a diagonal contribution Di,j�n ,m�,

Ri,j�n,m� = D̄i,j�n,m� + Di,j�n,m� , �17�

with

D̄i,j�n,m� = N �
�,��,��

�iP��,n���,m + 1�wj�������f j���,���

��1 − ���,���P���,m� �18�

and

Di,j�n,m� = N �
�,��,��

�iP��,n���,m + 1�wj�������gj����

����,��P���,m� . �19�

The above equations are exact and fully general. The next

step is to express Di,j and D̄i,j in terms of correlation func-
tions of observable quantities. This can be done in two dif-
ferent ways, leading to the CRT and LCZ results. We de-
scribe them separately below.
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D. CRT class algorithms

Given the time interval �n ,m�, in numerical simulations
one fixes a sequence I�n ,m� of sites to be updated and then
sums over different sequences. This corresponds to rewrite
the conditional probability �4� in the form

P��,n���,m� =
1

Nn−m �
I�n,m�

�
��n−1�,. . .,��m+1�

wI�n−1�

������n−1�� . . . wI�m����m+1����� , �20�

where the sum extends over all Nn−m possible choices of
I�n ,m� in the interval �m ,n�. Hence, �1 /N�P�� ,n ��� ,m
+1�wj��� ���� is the conditional probability restricted on the
ensemble of trajectories satisfying the constraint I�m�= j,
where I�m� is the particular site updated at time m in a given

trajectory. This implies that D̄i,j�n ,m� can be written as the
correlation ��i�n�f j�m��I�m�,j	 flip between �i and f j, taking
into account only trajectories, where the jth spin has been
flipped at time m. Similarly, Di,j�n ,m� is the correlation
��i�n�gj�m��I�m�,j	noflip between �i and gj, including only tra-
jectories where flipping � j has been attempted at time m but
rejected. Hence, the response function can be written as

Ri,j�n,m� = N��i�n�f j�m��I�m�,j	 flip + N��i�n�gj�m��I�m�,j	noflip.

�21�

This result is fully general. It holds irrespective of the nature
of the discrete variables and of the form of the transition
probabilities w and wh. Notice that because of the � function,
on average only one out of N trajectories contributes to Ri,j.
Therefore, the overall factor N makes Ri,j well defined in the
N→� limit.

Chatelain �6� and Ricci-Tersenghi �7� considered the par-
ticular case of Ising spins interacting via the Hamiltonian
H�� ,n�=−�i�i�Hi

W���+hi�n��, where Hj
W���=J��i	j

�i is the
Weiss field �the sum runs over the spins interacting with � j�
and of heat-bath transition probabilities

wj
h�����,m� =

exp���Hj
W��� + hj�m��� j��

2 cosh���Hj
W��� + hj�m���

. �22�

This specific choice corresponds to

f j��,��� = ��� j − � j
W� = gj��� , �23�

where � j
W=tanh��Hj

W�, allowing to rewrite Ri,j�n ,m� in the
more compact form

Ri,j�n,m� = N���i�n��� j�m + 1� − � j
W�m���I�m�,j	 . �24�

Here, since f j =gj, the distinction between � . . . 	 flip and
� . . . 	noflip in Eq. �21� can be avoided. Although Ri,j in Eq.
�24� is related to averages in the unperturbed dynamics, the
�I�m�,j acts like a projector on the restricted ensemble of
phase-space trajectories, including an attempted update of � j
at time m. This is also the ensemble of trajectories that con-
tributes to Ri,j�n ,m� in standard numerical simulations,
where the perturbation is applied. The presence of the pro-
jector �I�m�,j makes necessary the knowledge of the se-
quences of updated spins, restricting the applicability of this

FDR to numerical simulations. This problem is bypassed in
the LCZ algorithm, as shown below.

E. LCZ algorithm

In this section, we rederive the results of Refs. �8,12�,
originally obtained in a continuous time formalism, in the
case of evolution in discrete time. Starting from the defini-
tion �19� of Di,j and using the time translation invariance
property �5�, one has Di,j�n ,m�=��,���iP�� ,n
−1 ��� ,m�Bj����P��� ,m�, where Bj���= �� /2�wj�� ���gj���.
Hence,

Di,j�n,m� = ��i�n − 1�Bj�m�	 . �25�

We stress that differently from the CRT scheme of Eq. �24�,
the above form implies that no projection over a restricted
ensemble of trajectories is present.

We now turn to consider D̄i,j. To begin with, taking ad-
vantage of the arbitrariness of mj, let us consider the simplest
choice mj =0 in Eq. �9�. The effects of different choices of mj
will be considered in Sec. II F. Then, from Eq. �14� one has
f j��� ,���=−�� /2��� j�−� j�� and, since �� and �� may differ
at most for the spin on site j, one can write

1

N
wj��������� j� − � j�� =

1

N
�

k

wk��������� j� − � j��

= w��������� j� − � j�� , �26�

showing that wj can be replaced with the full transition prob-

ability. Inserting into Eq. �18�, D̄i,j�n ,m� takes the form

D̄i,j�n,m� =
�

2
��i�n��� j�m�	 , �27�

where

�� j�m� = N�� j�m + 1� − � j�m�� �28�

allows one to identify the discrete time derivative with re-
spect to m of the autocorrelation function C�n ,m�
= �� j�n�� j�m�	 in Eq. �27�.

In conclusion, with the choice mj =0 made in �8�, one has
the relation

Ri,j
LCZ�n,m� =

�

2
���i�n��� j�m�	 − ��i�n − 1�Bj�m�	� ,

�29�

with

Bi��� = �
��

wi��������i� − �i� , �30�

which is the form usually considered in the applications
�8,15,16�. Notice that B depends on a single configuration
and, hence, the term involving it in Eq. �29� is a correlation
between observable quantities.

As stressed previously, the above result, in addition to
being general with respect to the form of the single spin-flip
unperturbed transition probabilities, holds true �8� also for
transition probabilities involving multiple-spin updates �as,
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for instance, Kawasaki spin exchange�. Extensions to the re-
sponse of generic observables and to the case of transition
probabilities that do not obey detailed balance are discussed
in �11,12,16�, respectively.

In Eq. �29�, at variance with the CRT result, no reference
is made to the site I�m� to be updated at time m, and, there-
fore, there is no restriction on the ensemble of trajectories to
be considered. The average over all possible choices of I�m�
is, therefore, analytically performed. As it will be shown in
Sec. III, this makes the LCZ more efficient in numerical
applications. More important, being an ordinary nonequilib-
rium average, Eq. �29� is well suited to standard analytical
calculations and, in principle, to experiments.

Finally, let us point out a property of correlations involv-
ing Bi that will be useful in the following. Given a generic
observable O�m� at a time m	n−1, from the definition �30�,
one has

�Bi�n�O�m�	 = ���i�n�O�m�	 . �31�

Indeed,

�Bi�n�O�m�	 = �
�,��,�̃

wi��̃�����̃i − �i�

�P��,n���,m�O����P���,m� �32�

and, using Eq. �26�, one obtains Eq. �31�. Equation �31�
shows that in the mean, Bi plays the role of the time deriva-
tive of a spin.

F. Extra contributions related to mjÅ0

We now explore the consequences of a different choice of
mj�0 within the LCZ scheme. Retaining the mj contribu-
tions in Eq. �9�, the response function can be written as

Ri,j�n,m� = Ri,j
LCZ�n,m� + 
i,j�n,m� , �33�

with


i,j�n,m� = � �
�,��,��

�iP��,n���,m + 1�

��wj�������mj���,����1 − ���,���

+ �
�̃���

mj���,���wj��̃�������,��
P���,m� .

�34�

Since the full transition probability cannot be reconstructed
as in Eq. �26�, 
i,j can be identified as a correlation only in
the restricted phase space of trajectories with the jth spin
updated at the time m as in the CRT scheme. The choice
mj =0, therefore, has the advantage of avoiding this problem.

It must be stressed that the formal manipulations leading
to Eqs. �24� and �33� are exact and, hence, they are identical
if the same transition probabilities wh or equivalently the
same choice of M are considered. In particular, Eq. �33� con-
tains the CRT relation of Refs. �6,7� as a particular case
when heat-bath transition probability �22�, corresponding to
mj��� ,���=−� j

W����, is used.

Therefore, let us compare the CRT and LCZ results in this
case. Observing that, from Eq. �2�, ��̃���wj��̃ ����=1
−wj��� ���� and using Eq. �5�, one has


i,j�n,m� = − N��i�n�� j
W�m��I�m�,j	 + ��i�n − 1�� j

W�m�	 .

�35�

The first observation is that 
i,j�n ,m�=0 in equilibrium. In-
deed, from the definition of � j

W, one has
��i�n�� j

W�m��I�m�,j	= ��i�n�� j
W�m+1��I�m�,j	. Then, we use

time-reversal invariance to exchange the time arguments.
The � function acting now at the larger time can be replaced
by a factor 1 /N, representing the fraction of contributing
trajectories. Finally, exchanging again the time arguments,
one obtains N��i�n�� j

W�m��I�m�,j	= ��i�n−1�� j
W�m�	 and the

right-hand side of the above equation vanishes. Out of equi-
librium, this is no more true. However, it is generally ex-
pected that large-scale long-time properties of scaling sys-
tems in the thermodynamic limit are not affected by the
precise form of transition probabilities, provided detailed
balance hold. The effect of different choices of mj, therefore,
is expected to be negligible. Numerical simulations, pre-
sented in the next section, confirm the expectation.

III. VARIANCES

The FDR’s of CRT and LCZ have opened the way to
numerical algorithms for the computation of the response
function without applying the perturbation, the so-called
field-free methods. It was shown in Refs. �7,15� that the cal-
culation of the response function made via the CRT and LCZ
algorithms is very precise and numerically efficient.

In this section, we compute analytically the variances of
the fluctuations of the response function obtained with the
SM, where the perturbation is switched on, and with the two
field-free methods. This task is carried out for Ising spins, the
CRT method being valid only in this case. This allows us to
compare the numerical efficiency of the different algorithms
and to comment on the physical relevance of the variances,
particularly, in the context of systems with quenched disor-
der �see Sec. III B�.

Let us start by defining the fluctuating response function
ri,j by

Ri,j�n,m� = �ri,j�n,m�	 �36�

and, therefore, its variance by

�i,j
�R��n,m� = Ri,j

�2��n,m� − Ri,j
2 �n,m� , �37�

where

Ri,j
�2��n,m� = �ri,j�n,m�ri,j�n,m�	 . �38�

We then focus on Ri,j
�2�, computing it separately in the three

methods.
Standard method. In the standard method, one applies a

sufficiently small magnetic field h at time m in the jth site,
and the response function is obtained by numerically imple-
menting Eq. �12�, where
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�dwj
h�������
dhj

�
h=0

=
wj

h������� − wj�������
hj

. �39�

Since wj
h��� ���� enters Eq. �12� as the probability to flip � j

at the time m, the above numerical derivative takes contribu-
tion different from zero only on the ensemble of trajectories
where at that time the update of � j is attempted. Then, im-
posing this restriction by means of the projector �I�m�,j and
taking into account that ��i�n�	=0 in the unperturbed dy-
namics, one obtains

Ri,j�n,m� = N
��i�n��I�m�,j	h

h
, �40�

where the average is over the perturbed dynamics. We next
observe that ��I�m�,j�2=�I�m�,j and that from Eq. �20� ��I�m�,j	
=1 /N, since the � function cancels the sum over I�m� in
P�� ,n ��� ,n�. From Eq. �40�, one then obtains

Ri,j
�2��n,m� =

N

h2 . �41�

Notice that Ri,j
�2� diverges in the h→0 limit.

CRT relation. From Eq. �21�, one obtains

Ri,j
�2��n,m� = N2�2�f j

2���m + 1�,��m���I�m�,j	 flip

+ N2�2�gj
2���m���I�m�,j	noflip, �42�

which holds true for any choice of mj. Notice that the en-
sembles of trajectories contributing to the averages � . . . 	 flip
and � . . . 	noflip are orthogonal. Therefore, no cross terms are
present in Eq. �42�. Restricting to the case of Ising spins and
heat-bath transition probability, using Eq. �23� one finds

Ri,j
�2,CRT��n,m� = �2N2��1 − 2� j�m + 1�� j

W�m�

+ � j
W�m�2��I�m�,j	 . �43�

LCZ relation. In this case, ri,j is given in Eq. �29�, and one
has

Ri,j
�2,LCZ��n,m� = �ri,j�n,m�ri,j�n,m�	

=
�2

4
��� j

2�m�	 +
�2

4
�Bj

2�m�	

−
�2

2
��� j�m�Bj�m�	 . �44�

Notice that ��� j
2�m�	=2N2�1−� j�m+1�� j�m�	=2N2�wj���

�� ����I�m�,j	, where the last equality holds because only
trajectories, where at time m the jth spin is flipped, give a
nonvanishing contribution. Hence, since the � function con-
tributes on average only once every N trajectories
��� j

2�m�	�N. The second term on the right-hand side of Eq.
�44� does not depend on N. Regarding the third term, reason-
ing along the same lines as for ��� j

2�m�	, from the definition
�28�, it follows that it is independent on N. Then, neglecting
the last two terms in the large-N limit, one has

Ri,j
�2,LCZ��n,m� =

�2

4
��� j

2�m�	

=
�2

2
N2�1 − � j�m + 1�� j�m�	 . �45�

A. Comparison among variances

As already mentioned, in the limit h→0 the standard
method leads to a diverging variance.

We now compare the variances of the two field-free meth-
ods using in both cases heat-bath unperturbed transition
probabilities �22�. We first observe that �see Appendix A�

1 − �� j�m + 1�� j�m�	 =
1

N
�1 − �� j�m�� j

W�m�	� �46�

and, therefore,

Ri,j
�2,LCZ��n,m� =

�2

2
N�1 − � j

W�m�� j�m�	 . �47�

Next, for heat-bath transition probability, it can be shown
�see Appendix A� that

�� j�m + 1�� j
W�m��I�m�,j	 =

1

N
�� j

W�m�2	 . �48�

Using the above result in Eq. �43�, we get

Ri,j
�2,CRT��n,m� = �2N�1 − � j

W�m�2	 , �49�

and, finally, comparing with Eq. �47�, one obtains

Ri,j
�2,CRT��n,m� = 2Ri,j

�2,LCZ��n,m�

+ N�2��i
W�m���i�m� − �i

W�m��	 . �50�

Recalling Eq. �35�, and using Eq. �48�, one can show that
N�2��i

W�m���i�m�−�i
W�m��	=
 j,j�m+1,m�. As discussed in

Sec. II F, this term is zero in equilibrium and one expects it
to be negligible also out of equilibrium �this fact will be
checked by numerical simulations in Sec. IV�. Then one has

Ri,j
�2,CRT��n,m� � 2Ri,j

�2,LCZ��n,m� . �51�

In order to compute the variances, according to Eq. �37�, the
term Ri,j

2 should be subtracted from Ri,j
�2�. However, these

terms are negligible with respect to Ri,j
�2� in the thermody-

namic limit being independent on N. Hence,

�i,j
�R,CRT��n,m� � 2�i,j

�R,LCZ��n,m� . �52�

The numerical evaluation of fluctuation of response func-
tions confirms the above result, as it will be discussed in Sec.
IV.

The origin of the factor 2 in the variances can be related
to the different ways the term Di,j of Eq. �19� is treated in the
CRT and LCZ methods and, in particular, to the presence of
the � function in the CRT scheme �24�. Indeed, from Eq.
�21�, one has that, in the CRT scheme, the fluctuating part of

both Di,j and D̄i,j �corresponding to the two terms on the
right-hand side� is nonvanishing only once every N trajecto-
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ries, and in this case their contribution is of order N. There-
fore, both the contributions to the variance coming from Di,j

and D̄i,j are of order N. Conversely, in the LCZ scheme, this

is true only for the term D̄i,j of Eq. �27� because �� j in Eq.
�28� is of order N only once every N trajectories when the jth
spin is flipped. Instead, from Eq. �25�, one has that all tra-
jectories provide a term of order one to Di,j. So, the contri-
bution to the variance associated with this term is of order
one, and, hence, negligible. In conclusion, in the thermody-
namic limit there are two terms contributing in the same way
to the variance for the CRT algorithm whereas only one sur-
vives in that of LCZ.

B. Integrated response function

As already mentioned, the measurement of the impulsive
response function R is numerically very demanding, so, in
order to reduce the noise, usually the time integrated re-
sponse function �dynamic susceptibility� is considered

�i,j�n,m� =
1

N
�
l=m

n

Ri,j�n,l� = �xi,j�n,m�	 , �53�

where xi,j is the fluctuating part of �i,j. In numerical simula-
tions, we focus on the equal site integrated response �i,i.
Taking advantage of space translation invariance, one usually
computes the spatial average x�n ,m���1 /N��i=1

N xi,i�n ,m�,
which fluctuates less than xi,i. The variance of this quantity
can be written in the form as

�����n,m� = �0
����n,m� + �r

����n,m� , �54�

where

�0
����n,m� =

1

N2�
i=1

N

�xi,i
2 	 −

1

N
�2�n,m� �55�

contains only equal sites terms, and

�r
����n,m� =

1

N2�
i�j

�xi,ixj,j	 −
N − 1

N
�2�n,m� �56�

is the contribution from different sites.
In the case of simulations with the external field, the stan-

dard procedure consists in switching on a random perturba-
tion during the interval �n ,m�. One generally uses the bimo-
dal distribution hihj =h2�i,j, where the over line indicates
averages over the external perturbation. The integrated re-
sponse function is then given by �17�

��n,m� =
1

Nh2�
i=1

N

��i	hhi, �57�

where � 	h is the average in the presence of the perturbation.
From the above equation and using the bimodal distribution
of the external field, one obtains

�0
����n,m� =

1

Nh2 −
1

N
�2�n,m� �58�

and

�r
����n,m� =

1

N2h4�
i�j

�sisj	hhihj −
N − 1

N
�2�n,m� , �59�

which can also be written as

�r
����n,m� = �

i�j

�i,j
�2,2��n,m� , �60�

where

�i,j
�2,2��n,m� =

1

N2 �
l=m

n

�
l�=m

n � �2��i�n�� j�n�	
�hi�l� � hj�l��

�
h=0

− �i,i�n,m�� j,j�n,m� �61�

is a second-order susceptibility. This quantity represents a
tool for identifying cooperative effects in disordered systems,
as it was proposed in �11,12,18� and checked numerically in
�11,12�.

We then turn to consider the algorithms without the prob-
ing field. We first observe that the term �r is identical for all
the algorithms and is always related to the nonlinear suscep-
tibility �i,j

2,2, via Eq. �60�. Indeed, from the definition �56� one
has

�r
����n,m� =

1

N4�
i�j

�
l=m

n

�
l�=m

n

�ri,i�n,l�rj,j�n,l��	 −
N − 1

N
�2�n,m� .

�62�

The term �ri,i�n , l�rj,j�n , l�	 in Eq. �62� can be written, using
Eq. �12�, as

�ri,i�n,l�rj,j�n,l�	 = �
�,��,��,�̃,�̃�

�i� jP��,n���,l + 1��
�

dwi
h�������
dhi

�
h=0

P���,l��̃,l� + 1��
�

dwj
h��̃��̃��
dhj

�
h=0

P��̃�,l�� . �63�

The right-hand side of this equation can be readily inter-
preted as the second-order response Ri,j

�2,2��n , l , l��
=�

�2��i�n�� j�n�	
�hi�l��hj�l��

�h=0, leading to Eq. �60�. On the other hand, the
term �0 has different behaviors for the different algorithms.
As already shown, �0 diverges as h→0 in the standard
method. We now explicitly consider the term �0 in the CRT
and LCZ algorithms. From the definition

�0
����n,m� =

1

N4�
i=1

N

�
l=m

n

�
l�=m

n

�ri,i�n,l�ri,i�n,l��	 −
1

N
�2�n,m� .

�64�

As shown in Appendix B, �ri,j�n , l�ri,j�n , l��	=0 for l� l�
and, therefore, only the terms with l�= l contribute in the
double sum in this equation, yielding
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�0
����n,m� =

1

N4�
i=1

N

�
l=m

n

Ri,i
�2��n,l� −

1

N
�2�n,m� . �65�

In both the CRT and LCZ algorithms, �0
��� is an increasing

function of time roughly proportional to n−m, as already
pointed out in �7�. This follows from substituting Eq. �45�
into Eq. �55� and using Eq. �48�, obtaining

�0
����n,m� =

�2

N
�
l=m

n

�1 − ��i
W�l�2	� −

1

N
�2�n,m� . �66�

Since, at finite temperature, ��i
W�l�2	 is strictly less than one,

the first term gives a contribution growing as n−m, whereas
�2 is always at most equal to �2, and then subdominant at
large times. Therefore, from the result �52�, at large times
one has

�0
��,CRT��n,m� = 2�0

��,LCZ��n,m� . �67�

The numerical analysis supporting this result is presented in
the following section.

IV. NUMERICS

In this section, we present the results of the numerical
computation of the integrated response function �i,i of Eq.
�53� using the SM with heat-bath transition probabilities and
the CRT and LCZ methods. Details on the numerical imple-
mentation of the algorithms are given in Appendix C.

On the basis of the analysis of Sec. II, since the LCZ
algorithm corresponds to a different choice of Mj in Eq. �8�
with respect to the other two, one may expect some differ-
ences in the results. However, the numerical data presented
below show that the response function computed with all the
methods is the same within the numerical uncertainty. We
then compute the variances of the response function, in order
to check the analysis discussed in Sec. III and to quantify the
performance of the different methods. In the second part of
this section, we also present data for the Fredrickson-
Andersen model, showing that the LCZ field-free algorithm
can be successfully applied also in this case.

A. Ising and EA models

We consider N=1003 Ising spins interacting via the
Hamiltonian H���=−��i,j	Jij�i� j, where the sum runs over
nearest-neighbor spins on a three-dimensional cubic lattice
with periodic boundary conditions, evolving according to
heath-bath transition probabilities. The quantity B, entering
Eq. �29�, takes the form

Bi��� = �i
W − �i. �68�

In particular, we focus on the ferromagnetic Ising model
�Jij =J=1� and on the EA model �Jij = 
1 with equal prob-
ability�. Temperature is measured in units of J.

Let us start with the Ising model. In Fig. 1, the off equi-
librium evolution of the system after a quench from infinite
temperature to Tc=4.5115 is considered. The susceptibility
computed with the CRT and LCZ methods and with the SM
with h=0.1 and h=0.5 is plotted against n−m in the left

panel. As it can be seen, the first three computations yield the
same result with good accuracy. The SM with h=0.5, in-
stead, agrees with the other cases only up to n−m�3�107.
This shows that nonlinear effects become important from n
−m�3�107 onward. ��n ,m� grows monotonously to the
equilibrium value T�eq=1, as already found in previous stud-
ies �19�.

The right panel shows the variances ����. Results with the
SM, both with h=0.1 and h=0.5, give a time-independent
value very well consistent with ���,SM�=�0

��,SM�=1 / �Nh2�
�see Eq. �58��. This implies that �r

��,SM� is negligible and then
�0

��,SM� dominates the fluctuation of �. With the CRT and
LCZ algorithms, one finds variances, which are proportional
to each other, within the numerical uncertainty, i.e.,
���,CRT��n ,m��2���,LCZ��n ,m� in agreement with Eq. �52�,
and, as expected, they grow approximately linearly in n−m.
According to the analysis of Sec. III B, this implies that �r

���

is negligible with respect to �0
���. Actually, this can be
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FIG. 1. �Color online� Integrated autoresponse function ��n ,m�
�left panel� and its variance �right panel� in the three-dimensional
Ising model quenched from T=� to Tc=4.5115. Left panel: differ-
ent curves correspond to computations performed with the SM �us-
ing two different values of h� and with the field-free algorithms of
CRT and LCZ, as indicated in the key. In the right panel, the be-
havior of the variances of the response function computed with the
different methods is shown �continuous lines with heavy symbols,
see key�. The terms �0

��,CRT� and �0
��,LCZ� are also plotted �dashed

lines�.
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checked in Fig. 1, where the term �0
��� alone is plotted, show-

ing that it substantially coincides with the whole variance
���� both for CRT and LCZ.

Notice that since ���,SM� is constant, while ���,CRT� and
���,LCZ� grow in time, ���,SM� becomes smaller than the other
two for large times, as it can be seen in the case h=0.5 in
Fig. 1. However, when this happens, the data obtained with
the SM are already affected by large nonlinear effects, as it is
evident from the difference between the curves correspond-
ing to h=0.1 and h=0.5, in the left panel. Hence, the signal-
to-noise ratio in the field-free methods is better than the one
in the SM, provided that one works in the linear regime, as it
is shown in the right panel. Moreover, the factor 2 between
the variances implies that, in order to have a certain signal-
to-noise ratio, simulations performed with the CRT algorithm
require a larger statistics �by a factor �2� than those based on
the LCZ method.

Figure 2 displays the behavior of the same quantities as in
Fig. 1 in the case of a quench to T=3, below Tc. The behav-
ior of the susceptibility is now characterized by a maximum
around n−m�m, due to the interplay between the response
of single interfaces and the reduction in their number �17�, as
domain coarsening goes on. For what concerns the compari-
son between the variances, we first observe that in the SM,

the variance is almost time independent around a value in
good agreement with 1 / �Nh2�. With the field-free methods,
�0

����n ,m� still grows linearly with n−m and the relation �67�
is very well verified. Nevertheless, at variance with the
quench to Tc, �0

��� does not represent the whole variance ����

and the contribution �r
��� is not negligible. As already men-

tioned, we expect �r
��� to be the same for all the methods.

This is shown in Fig. 3, where �r
���=����−�0

��� is plotted
against n−m. The behavior of �r

��� is consistent with the
power law �r

����n ,m�� �n−m�0.5. Therefore, since the growth
of �r

��� is slower than that observed for �0
���, the proportion-

ality ���,CRT��2���,LCZ� between the whole variances is ex-
pected to hold at times larger than those accessed in the
simulation.

The observed difference in the behavior of �� in the
quench to Tc and to below Tc can be attributed to different
structure of domains. In the quench to below Tc, domains are
compact and inside domains ��i

W�m�2	�meq
2 , where meq is

the equilibrium value of the magnetization in the ordered
phase. Therefore, indicating with ��t� the defect density and
taking into account that at interfaces ��i

W�m�2	�0, one
roughly expects ��i

W�m�2	�meq
2 �1−��t��. Substituting this

result into Eq. �66�, one obtains asymptotically, when ��t�
�1,

�0
����n,m� � �1 − meq

2 ��n − m� . �69�

Since in the ordered phase meq is very close to one, this
implies that �0

��� linearly grows in time, as indeed observed,
but with a very small prefactor �the smaller the lower is the
temperature�. This makes �0

��� comparable or even subdomi-
nant at small time differences n−m with respect to �r

���. Nev-
ertheless, since �r

��� grows with a smaller exponent ��0.5�,
fluctuations are always dominated by �0

��� at large times.
Conversely, in the case of quenches to T=Tc, meq=0, and
�0

��� is the dominant contribution even for small n−m.
In Fig. 4, we show the integrated response function and its

variance in the EA model quenched to Tc �left� and below Tc
�right�. Here we take for Tc the value obtained in Ref. �20�.
All the methods yield the same result except the SM with the
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FIG. 2. �Color online� As in Fig. 1, for the three-dimensional
Ising model quenched from infinite temperature to T=3�Tc. Left
panel: different algorithms yield the same result except the SM with
the largest value of h, which is always affected by nonlinear effects.
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FIG. 3. �Color online� Difference �����n ,m�−�0
����n ,m� for the

three algorithms in the Ising model quenched to T=3. The dashed
orange line has a slope of 0.5.
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largest value of h which, for large values of n−m �n−m
�6�106 for T=Tc �left� or n−m�107 for T=1 �right�� is
affected by nonlinear effects. The variances show the behav-
ior similar to the one already discussed for the ferromagnetic
Ising model. A notable difference is that not only in the criti-
cal quench but also in the subcritical case, one has ����

��0
���, indicating that �r

��� is always a subdominant contri-
bution. We have explicitly checked that this happens also in
quenches to lower temperatures �T=0.5, T=0.2�. This pos-
sibly indicates that the argument developed above for ferro-
magnets cannot be straightforwardly extended to the low-
temperature phase of spin glasses and that second-order
susceptibilities �or variances� may be used as efficient tools
to characterize this difference.

B. Fredrickson-Andersen model

As stated in �8� and discussed further in �11,12� and in
Sec. II of this paper, the FDR of LCZ can be derived in full

generality in the context of Markovian dynamics, regardless
of the model Hamiltonian and of the choice of transition
probability. However, this claim has been questioned in �14�,
where the applicability of the LCZ algorithm to the FA
model was doubted. However, the derivation of the LCZ
relation as given above, or with different analytical tech-
niques in Refs. �11,12,21�, shows clearly its general charac-
ter, where no particular assumptions on the specific system
nor on the form of the perturbation are made. In order to
illustrate this issue also numerically, we have carried out the
computation the integrated response function with the LCZ
algorithm in the one-dimensional FA model.

The Hamiltonian of the FA model reads as H���=�i�i,
where the �i are bimodal variables taking the values �0,1�,
with �i=1 for a mobile fluid region and �i=0 an for an
immobile one. Spins evolve according to transition prob-
abilities obeying detailed balance, whose off-diagonal ele-
ments are

wi������ = �
�1 − �i� + �1 − 
��i��i��� , �70�

where 
=1 / �1+e1/T� is the equilibrium density and �i���
=�i−1+�i+1 is a kinetic constraint that preserves a detailed
balance, due to the independence from �i. The integrated
response function has been computed using both the SM and
the LCZ algorithms. In the SM, the effect of the external
field amounts to replace 
 with 
i

h=1 / �1+e�1−hi�/T�, whereas
the quantity Bi defined in Eq. �30� and entering the LCZ
relation is given by

Bi��� = �
�1 − �i� + �1 − 
��i��i����1 − 2�i� . �71�

In Fig. 5, the comparison between the data obtained with
the two methods and for three different temperatures is pre-
sented. The value of h used with the SM was checked to be
in the linear regime. In particular, we found that keeping the
ratio h /T=0.01 constant satisfies the linearity requirement.
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FIG. 4. �Color online� The integrated autoresponse function
��n ,m� �insets� and its variance �main� in the three-dimensional EA
model quenched from T=� to Tc�1.2 �left panel� or to T=1�Tc.
Insets: different curves correspond to computations performed with
the SM and two different values of h and with the field-free algo-
rithms of CRT and LCZ, as indicated in the key. In the main part of
the two panels, the behavior of the variances of the response com-
puted with the different methods is shown �continuous lines with
heavy symbols, see key�. The terms �0

��,CRT� and �0
��,LCZ� are also

plotted �dashed lines�.
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The agreement between the two computations is excellent in
the whole time range and for all the temperatures considered.
Data for T=1 converge to the equilibrium value, whereas
results for T=0.5 and T=0.2 exhibit a nonmonotonic behav-
ior already observed in one-dimensional kinetic-constrained
models �22�. At low temperatures, the equilibrium value is
reached only asymptotically.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we have compared the FDR derived in a
series of papers by CRT �6,7� and LCZ �8�. First, by rederiv-
ing them in a unified formalism we have pointed out that the
distinction between these FDR is due to a different choice of
the perturbed transition probabilities. Actually, even restrict-
ing to systems where detailed balance is obeyed, for a given
choice of unperturbed transition probabilities an arbitrarity
remains on the form of the perturbed ones, which is param-
etrized by the function mj defined in Eq. �10�. In the case of
Ising spins, selecting the value of mj, corresponding to heat-
bath transition probabilities, leads to the CRT relation �24�.
This FDR relates Ri,j to a correlation function involving a �
function, which weights only a subset of the whole ensemble
of unperturbed trajectories. For this reason, the FDR of CRT,
besides being limited to Ising spins with heat-bath transition
probabilities, can only be used in numerical simulations. On
the other hand, making the choice mj =0 of LCZ allows a
further mathematical treatment leading to the FDR �29�,
where the response function is related to standard unper-
turbed correlations. This makes this relation basically differ-
ent from those obtained in �10� �Eq. �16� and in other ap-
proaches �i.e., in �5,9���, where the response function cannot
be expressed in terms of correlations of observables. This
makes the applicability of the LCZ relation, in principle, not
restricted to simulations. Furthermore, this FDR has a larger
degree of applicability with respect to the CRT since it is not
restricted to Ising spins nor to heat-bath unperturbed transi-
tion probabilities.

In the second part of this paper, we have studied the effi-
ciency of the CRT and LCZ field-free methods. In order to
do that, we evaluate analytically the variances of the re-
sponse function obtained with the SM or with the field-free
methods. It turns out that, as far as the autoresponse function
is considered, field-free methods are by far more efficient
than the SM. This combines with the advantage of having
linearity �h→0� built in. Moreover, we found that the LCZ
algorithm is slightly more efficient �by a factor �2� than the
method of CRT.

We conclude by pointing out that the results contained in
this paper are not restricted to the framework of the efficient
computation of the response function. Indeed, we mention
that the study of the variances is closely connected to the
issue of characterizing the fluctuation of two-time quantities
in aging systems, a problem which has received a good deal
of attention recently �3�. Moreover, as discussed at the end of
Sec. III, the variance of the response function is also related
to the second-order susceptibility introduced in �11,12,18�
for the study of cooperativity.
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APPENDIX A

We first prove Eq. �46�,

1 − ��i�m + 1��i�m�	 =
1

N
�1 − ��i

W�m��i�m�	� . �A1�

To do that, we first observe that from Eq. �3�,

�1 − �i�m + 1��i�m�	 =
1

N
�

��,��

�1 − �i��i��wi�������P���,m� .

�A2�

Only the term wi��� ���� in the transition probability between
the time m and m+1 contributes. Hence, the two configura-
tions �� and �� differ only for the spin on the ith site and
sum on �� reduces to the sum on the two possible values

�i�. Then, using the heath-bath form for the transition prob-
abilities,

wj������� =
1

2
�1 + � j�� j

W����� �A3�

one obtains Eq. �A1�.
Next we prove Eq. �48�. Let us first prove that

��� j�m + 1� − � j
W�m��� j

W�m��I�m�,j	 = 0. �A4�

From the definition, one has

��� j�m + 1� − � j
W�m���i

W�m��I�m�,j	

= �
��,��

�� j� − � j
W�����wj��������I�m�,jP���,m� .

�A5�

Because of the delta function, one has that the configurations
�� and �� can differ only for the spin in the jth site. This
implies that � j

W����=� j
W���� and that the sum on �� reduces

to the sum on the two possible values 
� j�. The heath-bath
form �A3� for the w then gives

�
�j�=
�j�

�� j� − � j
W�����wj������� = 0, �A6�

which implies Eq. �A4�. We next observe that from Eq. �20�,

�� j
W�m�2�I�m�,j	 =

1

N
�
I�m�

�
��,�

�� j
W�2w������P��,m��I�m�,j

=
1

N
�� j

W�m�2	 . �A7�

Combining the above result with Eq. �A4�, one recovers Eq.
�48�.
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APPENDIX B

Here we prove that Ri,j
�2��n ,m ,m��= �ri,j�n ,m�ri,j�n ,m��	 is

identically zero for all the algorithms if m�m�.

1. Standard method

In the SM, one applies a random magnetic field hi, with

h̄i=0 and hihj =�ij, and the response is obtained as

Ri,j�n,m� = N
��i�n�hj�I�m�,j	

h2 . �B1�

Therefore,

Ri,j
�2��n,m,m�� =

N

h2�m,m�. �B2�

2. CRT relation

In this case, ri,j can be directly read off from Eq. �21�.
From Eq. �15�, one has

�
��,��

wi�������f i���,����1 − ���,���P���,m��,m��

= − �
��

wi�������gi�������,��P���,m��,m�� �B3�

which gives

�f i�m�O�m��	 flip + �gi�m�O�m��	noflip = 0, �B4�

for every generic observable O computed at the shorter time
m�. Therefore,

Ri,j
�2��n,m,m�� = 0 �B5�

for m�	m−1.

3. LCZ relation

Reading ri,j from Eq. �29�, using the property �31�, one
obtains that ����i�m�−Bi�m��O�m��	=0, for every generic
observable O computed at the shorter time m�. Therefore,
one arrives again at Eq. �B5� for m�	m−1.

APPENDIX C: NUMERICAL IMPLEMENTATION OF
ALGHORITHMS FOR THE COMPUTATION OF

INTEGRATED RESPONSE FUNCTIONS

1. Standard method

For each realization of the dynamical trajectory, a random
magnetic field hi is assigned to each site. hi is usually chosen
from a bimodal distribution hi= 
h. The evolution is then
controlled by unperturbed transition probabilities until the
time m and by the perturbed ones given in Eq. �8� for later
times. At the time n, the integrated response function is com-
puted according to Eq. �57�.

2. CRT relation

The integrated response function can be obtained from the
space and time integral of Eq. �24�,

��CRT��n,m� =
�

N
�

i

��i�n��i�n,m� ,	 �C1�

with

�i�n,m� = �
l=m

n−1

��i�l + 1� − �i
W�l�� . �C2�

In each realization of the dynamics, the quantity �i is ini-
tially set to zero on each site. For all the time steps l�m, � j
is updated, via the relation

� j = � j + �i�l + 1� − �i
W�l� , �C3�

only on the site j= I�l�, where the flip of the spin has been
attempted. Elsewhere, �i is left unchanged. At each time n
�m, ��n ,m� is then computed according to Eq. �C1�.

3. LCZ relation

From Eq. �29�, one immediately obtains

��LCZ��n,m� =
�

2N
�

i

���i�n��i�n�	 − ��i�n��i�m�	

+ ��i�n − 1�Ai�n,m�	� �C4�

with

Ai�n,m� =
1

N
�
l=m

n−1

Bi�l� . �C5�

The quantity ��i�n��i�m�	 is the usual two-time correlations
function. Concerning the evaluation of Ai, the basic observa-
tion is that, according to Eq. �68�, Bi only depends on the
spin �i and on the spins interacting with it. In particular, for
the models considered in this paper, Bi depends on �i and on
its nearest-neighboring spins. The evaluation of Ai proceeds
as follows. At the time m, Bi is evaluated on each site, ac-
cording to Eq. �68�, Ai is set to zero and li is set to m. li
represents the time where the last evaluation of Bi has been
performed. Bi is then left unchanged on all sites until a spin
flip occurs. If the spin flip occurs on site I�l� at time l, Aj is
updated as

AI�l� = AI�l� + BI�l��lj��l − lj�/N . �C6�

lj is then set to l and the new value of Bj is evaluated. The
same procedure is repeated for all the spins interacting with
�I�l�, leaving unchanged Ai, Bi elsewhere. In the end, Ai�n ,m�
is obtained via the relation

Ai�n,m� = Ai + Bi�li��n − li�/N , �C7�

and the integrated response function is computed according
to Eq. �C4�.
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